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Abstract— The paper is devoted to the problem of pole assign-
ment by state feedback in non-square implicit linear systems.
In particular, the proof of Theorem 4.6 in [5] (here Theorem
1) is completed by a proof of sufficiency conditions, providing a
complete solution to the problem of pole assignment in the case
of column regularizable systems.

I. INTRODUCTION

The main subject of the study is the implicit linear system

Eẋ(t) = Ax(t) +Bu(t), t ≥ 0, (1)

where E,A ∈ IRq×n, B ∈ IRq×m are matrices over IR ,
the field of real numbers, and x(t), u(t) are the state and
control input of the system, respectively. The system (1) will
frequently be referred to as the triple (E,A,B). System (1) is
considered in the general case, when q is not necessary equal to
n, and such a system is called non-square. Non-square systems
arise for example in networks modeling, signal flow graphs,
Petri nets, and can be applied to circuit systems, composite
systems [1], [2].

Applying the linear and proportional state feedback

u(t) = Fx(t) + v(t), (2)

where F ∈ IRm×n and v(t) is a new control input, to the
system (1), gives rise to the closed-loop system

Eẋ(t) = [A+BF ]x(t) +Bv(t). (3)

By choosing different state feedback gains F , we alter the
response of the closed-loop system. In particular, to shape
the desired system response one assigns the prescribed pole
structure to the closed-loop system by choosing the appropriate
matrix F in (2). Such a problem is called the pole structure
assignment by state feedback [7]. A simpler version of this
version is called pole assignment problem. In particular, it
deals with the assignment of the prescribed (finite and infinite)
poles to the system (3) using a control of the form (2). These
problems belong to the most important ones in control and are

of great practical interest. For example, they are used or the
design of controller as well as observer [4].

In [5] the problem of pole assignment is considered in the
non-square systems and there are given necessary conditions of
its solvabiity. Here, the proof is presented for the sufficiency of
that conditions in the so-called column regularizable systems,
which is defined below.

II. BACKGROUND

The symbol � stands for the divisibility of the polynomials
α(s), β(s) ∈ IR[s], i.e. α(s)�β(s) (β(s)�α(s)) means α(s)
divides β(s), and the degree, deg x(s), of a polynomial vector
x(s) ∈ Rk[s] is the greatest degree of all its entries xi(s).
Accordingly, the degree of column i of a polynomial matrix
M(s) ∈ Rp×m[s] is denoted by degciM(s). Such a matrix is
called column reduced if it can be written in the form M(s) =
Mlc diag

{
sci
}m
i=1

+ M̄(s), where Mlc ∈ IRp×m is of full
column rank and M̄(s) ∈ Rp×m[s] is such that degci M̄(s) <
ci := degciM(s). Two polynomial matrices A(s) and B(s)
are said to be equivalent, we then write A(s) ∼= B(s), if there
exist unimodular matrices U(s) and V (s) over IR[s] such that
A(s) = U(s)B(s)V (s). A polynomial matrix of degree 1 is
called a matrix pencil.

The system (1) is called regular if the pencil sE − A
is regular, i.e. E and A are square, and det[sE−A] is not
identically equal to zero. The system (1) is called regularizable
by state feedback if there exists an F such that the pencil
sE−A−BF is regular. In the case of non-square systems an
analogous concept, weak regularizability, is defined in [5]. The
system (1) is called weakly (row or column) regularizable if
the pencil sE−A−BF is of full row or column rank for some
F ∈ IRm×n. The weak regularizability seems to be a pertinent
property of system (1) since it guaranties the existence of a
transfer function, possibly non-unique.

The pole structure of the system (E,A,B) is defined by the
zero structure of the pencil sE −A. The finite zero structure
of sE − A is given by the invariant polynomials of sE − A,
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say ψi(s) � ψi+1(s), i = 1, . . . , r − 1, r := rank [sE − A].
The infinite zero structure is defined [8] by the terms s−di ,
di > 0, i = 1, . . . , kd, occurring in the Smith-McMillan form
at infinity of sE−A. The integers di are called the infinite zero
orders. The finite poles are given by the roots of the invariant
polynomial ψi(s) of sE−A, including the multiplicities, and
the pole at infinity is described by its multiplicity

d :=

kd∑
i=1

di .

The problem of pole assignment by state feedback lies in
finding conditions (necessary and sufficient, if possible) under
which there exists an F ∈ IRm×n such that the roots of a
prescribed monic polynomial, say ψ(s), and a positive integer,
say d, will define the finite and infinite zeros of sE−A−BF .

The main concepts and tools used for solving the considered
problem are given in [7], [5] (see also references therein) and
briefly recalled below.

A. Feedback Canonical Form

Under the action of the feedback group, which consists of
quadruples (P,Q,G, F ), where P, Q, G, F ∈ IRm×n are
matrices over IR , P, Q, G invertible, each system (E,A,B)
can be brought into the feedback canonical form [6],

(P,Q,G, F ) ◦ (E,A,B) = (PEQ,P [A+BF ]Q,PBG)

=: (EC , AC , BC).

The feedback canonical form consists of a pencil sEC − AC
and a matrix BC that are block-partitioned, in the form

sEC −AC := blockdiag {sEj −Aj} , j ∈ {ε, σ, q, p, l, η},

where sEj − Aj is again a block diagonal matrix pencil
consisting of the blocks, non-increasingly ordered by size, of
types (bj), for j ∈ {ε, σ, q, p, l, η},

(bε)

εi+1︷ ︸︸ ︷s −1
. . .

. . .
s −1


εi

(bσ)

σi︷ ︸︸ ︷
s −1

. . .
. . .
. . . −1

s


σi

(bq)

qi︷ ︸︸ ︷
−1

s
. . .
. . . −1

s


qi+1

(bp)

pi+1︷ ︸︸ ︷
−1 s

. . .
. . .
. . . s

−1


pi+1

(bl)

li︷ ︸︸ ︷
s −1

. . .
. . .
. . . −1

−ai0 −ai1 · · · s−aili


li

(br)

ηi︷ ︸︸ ︷
s

−1
. . .
. . . s

−1


ηi+1

,

i = 1, . . . , kt, with kt denoting the number of the correspond-
ing blocks. The values describing these blocks are called:

• the nonproper controllability indices, ε1 ≥ . . . ≥ εkε ≥ 0;
• the proper controllability indices, σ1 ≥ . . . ≥ σkσ > 0;
• the almost proper controllability indices, q1 ≥ . . . ≥
qkq ≥ 0;

• the almost nonproper controllability indices, p1 ≥ . . . ≥
pkp ≥ 0;

• the fixed invariant polynomials of [sEC − AC , −BC ]
represented by the polynomials αi(s) = sli +ailis

li−1 +
· · ·+ ai1s+ ai0, li > 0, α1(s) . α2(s) . · · · . αkl(s);

• the row minimal indices of [sEC − AC , −BC ], η1 ≥
. . . ≥ ηkη ≥ 0.

Similarly, BC takes the form

BC :=


0 0
Bσ 0
0 Bq
0 0
0 0
0 0

 ,
Bσ := blockdiag

{
[0 · · · 01]

T ∈IRσi
}kσ
i=1

Bq := blockdiag
{

[0 · · · 01]
T ∈IRqi+1

}kq
i=1

As the main subject of the paper is a study of the influence
of state feedback (2) upon (1), the system is already assumed
to be in the feedback canonical form and the index C will
therefore be omitted in the sequel.

Proposition 1: [7], [5] The following holds:
(a) (E,A,B) is regularizable if kε = kq and kη = 0.
(b) (E,A,B) is row regularizable if kε ≥ kq and kη = 0.
(c) (E,A,B) is column regularizable if kε ≤ kq .

B. Normal External Description

Definition 1: Polynomial matrices N(s), D(s) are said to
form a normal external description (NED) of the system
(E,A,B) if they satisfy the following conditions:
•
[N(s)
D(s)

]
forms a minimal polynomial basis

for Ker[sE−A, −B], i.e.

[sE −A, −B]

[
N(s)
D(s)

]
= 0 (4)

• N(s) forms a minimal polynomial basis
for KerΠ[sE−A], where Π is a maximal left
annihilator of B.

An NED is not unique unless it is in the canonical polyno-
mial basis [3], which will be assumed hereafter.

It should be noted that the NED reflects just those parts of
[sE −A,−B] that are given by the ε− and σ−blocks. Let B̄
be such that [B B̄] is of full column rank and

rank [sE −A, − [B B̄]] = q, ∀s ∈ C ∪∞.

The system (E,A, [B B̄]) defined in such a way is called an
extended system of (1). Its NED, say

[
NE(s)
DE(s)

]
, reveals the

same information as the pencil [sE −A, − [B B̄]].
To handle the finite and infinite poles of (1) in a unified

way, the conformal mapping s = 1+aw
w , where a ∈ IR, and

is not a pole of (E,A,B), is used. Then, the point s = ∞
is moved to w = 0, while all the finite points except s = a
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are kept in finite positions. Applying the conformal mapping
to the equation[

sE −A, −[B B̄]
] [ NE(s)

DE(s)

]
= 0, (5)

premultiplying it by diag {wνi}, νi := degri
[
sE −

A, −[B B̄]
]
, and postmultiplying by diag {wµi}, µi :=

degci
[NE(s)
DE(s)

]
, gives

[
wẼ − Ã, −[B̃(w) ˜̄B(w)]

] [ ÑE(w)

D̃E(w)

]
= 0, (6)

which can be viewed as a w-analogue of (5). Then the action
of the state feedback upon (6), and hence the extended system
of (1), is described by the following relationship[

wẼ − Ã− B̃(w)F, −[B̃(w) ˜̄B(w)]
] [ ÑE(w)

D̃EF (w)

]
= 0

where
D̃EF (w) := D̃E(w)−

[
F
0

]
ÑE(w).

In particular, both
[
wẼ− Ã− B̃(w)F

]
and D̃EF (w) have the

same (non-unit) invariant polynomials

ψi(w) := wdi+degψi(s)ψi

(
1 + aw

w

)
:= wdi ψ̃i (w) ,

where di (di := 0, i > kd) and ψ̃i (w) are the infinite zero
orders and w-analogues of (non-unit) invariant polynomials
ψi(s) of the pencil sE − A − BF , respectively. So, the
zero structure of the polynomial matrix D̃EF (w) will be
investigated instead of that of the pencil sE −A−BF .

The matrix D̃EF (w) is of the form

D̃EF (w)=



D̃1ε S̃σ + D̃1σ D̃1q D̃1p D̃1l D̃1η

D̃2ε D̃2σ S̃q + D̃2q D̃2p D̃2l D̃2η

−−−−−−−−−−−−−−−−
0 0 Zq 0 0 0
0 0 0 Zp 0 0

0 0 0 0 S̃α 0

0 0 0 0 0 S̃η


(7)

where

S̃σ := diag {(1 + aw)σi}kσi=1 , S̃q := diag {(1 + aw)qi}kqi=1 ,

Zq := diag {−wqi}kqi=1 , Zp := diag {−wpi}kpi=1 ,

S̃α := diag {α̃i(w)}kli=1, S̃η := blockdiag

{[
(1 + aw)ηi

−wηi

]}kη
i=1

,

and D̃ij are polynomial matrices satisfying the conditions:

• degci

[
D̃1j

D̃2j

]
≤ ji, j ∈ {ε, σ, q, p, l, η}, i = 1, 2, . . . , (8)

• D̃ij , j ∈ {σ, q, l, η} consists of the polynomials with zero
constant terms, and

•
[
D̃1ε S̃σ+D̃1σ

D̃2ε D̃2σ

]
(or at least one of its (kσ + kq) × (kq + kσ)

submatrices
[ D̃′1ε S̃σ+D̃1σ

D̃′2ε D̃2σ

]
, kε > kq) is column reduced with

the degrees equal to ji, i = 1, 2, . . . , j ∈ {ε, σ}.

C. Problem Formulation
Given a weakly regularizable system (1), a monic poly-
nomial ψ(s), and integer d > 0, find conditions under
which there exists a matrix F ∈ IRm×n such that (in w-
notation) ψ̃(w)wd will be a gcddm

[
wẼ−Ã−B̃(w)F

]
Using the concept of NED, it follows that ψ̃(w)wd is also
gcddmDEF (w). Thus, gcddm

[
wẼ − Ã − B̃(w)F

]
can be

replaced by gcddmDEF (w) in the above formulation.

D. Previous Results

The results known in the case of regularizable systems are
now recalled.

Proposition 2: [7] Given a regularizable system (1) (kε =
kq and kη = 0), a monic polynomial ψ(s), and an integer
d ≥ 0, then there exists a matrix F in (2) such that det[sE −
A − BF ] = ψ(s) and the sum of the infinite zero orders of
sE −A−BF equals d if and only if the conditions (9)-(11)
(and (12) if kε = 0) are satisfied:

degψ(s)+d =

kε∑
i=1

εi +

kσ∑
i=1

σi +

kq∑
i=1

qi +

kp∑
i=1

pi +

kl∑
i=1

li (9)

ψ(s) � α1(s)α2(s)...αkl(s) (10)

d ≥
kq∑
i=1

qi +

kp∑
i=1

pi (11)

degψ(s) =

kσ∑
i=1

σi +

kl∑
i=1

li (12)

III. MAIN RESULTS

Consider a column regularizable system (1) and the corre-
sponding matrix D̃EF (w), see (7), with kq ≥ kε. Bringing the
matrix S̃η , by elementary operations, to the form, Sη̃ ∼=

[
Ikη
0

]
,

the matrix D̃EF (w) will further be simplified. Particularly, the
matrices D̃1η, D̃2η can be zeroed, which means that we can
study just a submatrix of D̃EF (w), denoted as P (w), that does
not contain rows and columns corresponding to the η-blocks.
It should also be clear that gcddm D̃EF (w) = gcddmP (w)
since the only nonzero dominant minors of D̃EF (w) are those
of P (w). Thus, we will investigate the matrix P (w) instead
of D̃EF (w). To that end, let Skt denote the set of all k-tuples
{j1, j2, . . . , jk}, j1 < j2 < . . . < jk, ji ≤ t, ji, t ∈ N, the
set of natural numbers, i = 1, 2, . . . , k, k ≤ t. Let further
P [ααα] and P[βββ], ααα ∈ Sjm, βββ ∈ Skn, denote submatrices of an
m × n matrix P consisting of rows i1, i2, ..., ij and columns
j1, j2, ..., jk of P , respectively. For example, P [/ααα]

[βββ] , ααα ∈ Sjm,
βββ ∈ Skn, where /ααα := {1, 2, ...,m}−ααα, denotes a submatrix of
P obtained by eliminating rows i1, i2, ..., ij of P and having
columns j1, j2, ..., jk of P .
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Lemma 1: Let P (s) =

[
X Y
0 Z

]
be an (m+p)×(n+p),

m − n ≤ p, polynomial matrix of full column rank with Z
nonsingular and diagonal. Then

dmP (s) = det[X Y[/kkk]]
[jjj] detZ

[kkk]
[kkk] , (13)where

kkk ∈ Sp−ip , jjj ∈ Sn+i
m , i = 0, 1, . . . ,m− n. (14)

Proof: Clearly, the dominant minors of P (s) are deter-
minants of (n+ p)× (n+ p) submatrices of P , i.e.

dmP (s) = detP [jjj](s), jjj ∈ Sn+p
m+p.

More particularly,

dmP (s) = det

[
X [jjj] Y [jjj]

0 Z [kkk]

]
,

where jjj,kkk are as in (14). Then (13) follows as a consequence
of the diagonal form of Z.

Theorem 1: Let a column regularizable system (1) (kq ≥
kε), a monic polynomial ψ(s), and an integer d ≥ 0 be given.
Then there exists a matrix F ∈ IRm×n such that ψ̃(w)wd =
gcddm

[
wẼ−Ã−FB̃(w)

]
if and only if the conditions (15)-

(19) (and (20) if kε = 0) are satisfied.

degψ(s)+d ≤
kε∑
i=1

εi+

kσ∑
i=1

σi+

kε∑
i=1

qi+

kp∑
i=1

pi +

kl∑
i=1

li (15)

ψ(s) �

kl∏
i=kq−kε+1

αi(s) (16)

d ≥
kε+kp∑
i=1

zi, (17)

degψ(s) ≤
kε∑
i=1

εi +

kσ∑
i=1

σi +

kl∑
i=1

li (18)

d ≤
kε∑
i=1

εi +

kσ∑
i=1

σi +

kε∑
i=1

qi +

kp∑
i=1

pi (19)

d ≤
kp∑
i=1

pi (20)

where equality holds in (15) for kε = kq , {zi}
kε+kp
i=1 denotes

the set of the first kε + kp indices of the non-decreasingly
ordered set {qi}

kq
i=1∪{pi}

kp
i=1, and αi(s) := 1 for kl ≤ kq−kε.

Proof: A proof of necessity is given in [5].
Sufficiency. When kε = kq the conditions of Theorem 1 turn
out to be those of Proposition 2, which means that just the
case kq > kε is to be proved.

Let k?p and k?q denote the numbers of indices pi and qi in
{zi}

kε+kp
i=1 such that k?p + k?q = kp + kε. Let further k?l :=

kl − kqkε for kl > kq − kε and k?l := 0 for kl ≤ kq − kε.
To prove that the conditions (15)-(20) are sufficient, a matrix

P (w) will be constructed such that

gcddmP (w) = w
∑
zi

kl∏
i=kl−k?l +1

α̃i(w)wd
′
ψ′(w) (21)

where

0 ≤ d′ ≤ A1 +

kε∑
i=1

qi −
kq∑

i=kq−k?q+1

qi +

kp−k?p∑
i=1

pi (22)

0 ≤ degψ′(w) ≤ A2 +

kl−k?l∑
i=1

li (23)

A1 +A2 ≤
kε∑
i=1

εi +

kσ∑
i=1

σi (24)

with A1 = 0 for kε = 0.
Let further k?pk

?
pk
?
p ∈ Sk

?
p

kp
and k?lk

?
lk
?
l ∈ Sk

?
l

kl
be such that

k?pk
?
pk
?
p = {kp − k?p + 1, . . . , kp}, kp − k?p = k?q − kε
k?lk
?
lk
?
l = {kl − k?l + 1, . . . , kl}

and let the matrix P (w) be partitioned as follows:

D̃1ε S̃σ+D̃1σ | D̃1q D̃1p[/k?pk
?
pk
?
p] D̃1l[/k?lk

?
lk
?
l ] D̃1p[k?pk

?
pk
?
p] D̃1l[k?lk

?
lk
?
l ]

D̃2ε D̃2σ |S̃q+D̃2q D̃2p[/k?pk
?
pk
?
p] D̃2l[/k?lk

?
lk
?
l ] D̃2p[k?pk

?
pk
?
p] D̃2l[k?lk

?
lk
?
l ]

−−−−−−−−−−−−−−−−−−−−−−−
0 0 | Zq 0 0 0 0

0 0 | 0 Z
[/k?pk

?
pk
?
p]

p[/k?pk
?
pk
?
p]

0 0 0

0 0 | 0 0 S̃
[/k?lk

?
lk
?
l ]

α[/k?lk
?
lk
?
l ]

0 0

0 0 | 0 0 0 Z
[k?pk
?
pk
?
p]

p[k?pk
?
pk
?
p]

0

0 0 | 0 0 0 0 S̃
[k?lk
?
lk
?
l ]

α[k?lk
?
lk
?
l ]


It can be seen that if

D̃1p[k?pk
?
pk
?
p] = D̃1l[k?lk

?
lk
?
l ] = D̃2p[k?pk

?
pk
?
p] = D̃2l[k?lk

?
lk
?
l ] := 0, (25)

then

gcddmP (w) = gcddmP1(w) detZ
[k?pk
?
pk
?
p]

p[k?pk
?
pk
?
p]

det S̃
[k?lk
?
lk
?
l ]

α[k?lk
?
lk
?
l ]

=

= gcddmP1(w)w

kp∑
i=kp−k?p+1

pi kl∏
i=kl−k?l +1

α̃i(w)

(26)

where

P1(w) :=



D̃1ε S̃σ + D̃1σ | D̃1q D̃1p[/k?pk
?
pk
?
p] D̃1l[/k?lk

?
lk
?
l ]

D̃2ε D̃2σ |S̃q + D̃2q D̃2p[/k?pk
?
pk
?
p] D̃2l[/k?lk

?
lk
?
l ]

−−−−−−−−−−−−−−−−−−
0 0 | Zq 0 0

0 0 | 0 Z
[/k?pk

?
pk
?
p]

p[/k?pk
?
pk
?
p]

0

0 0 | 0 0 S̃
[/k?lk

?
lk
?
l ]

α[/k?lk
?
lk
?
l ]


In what follows it will be shown that the matrices D̃ij

satisfying (8) can always be chosen such that

gcddmP1(w) = w

kq∑
i=kq−k?q+1

qi

wd
′
ψ′(w), (27)

where d′, ψ′(w) satisfies (22), (23), respectively.
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Put
D̃1q := 0, D̃2q := Ikq − S̃q, (28)

which is always possible by (8), subtract the second block of
rows multiplied by Zq from the third block of rows of P1(w),
and zero the matrices in the second block of rows by the third
block of columns. Finally permute the second block of rows
and the fifth one and the third block of columns and fifth one.
The matrix P1(w) will be in the form

D̃1ε S̃σ+D̃1σ |D̃1p[/k?pk
?
pk
?
p] D̃1l[/k?lk

?
lk
?
l ] 0

Aε Aσ | Ap Al 0

−−−−−−−−−−−−−−
0 0 | Z [/k?pk

?
pk
?
p]

p[/k?pk
?
pk
?
p]

0 0

0 0 | 0 S̃
[/k?lk

?
lk
?
l ]

α[/k?lk
?
lk
?
l ]

0

0 0 | 0 0 Ikq


=:

X Y
−−−
0 Z

, (29)

where
Aε := Zq D̃2ε, Ap := Zq D̃2p[/k?pk

?
pk
?
p]

Aσ := Zq D̃2σ, Al := Zq D̃2l[/k?lk
?
lk
?
l ]

Denote

Zα :=

 S̃
[/k?lk

?
lk
?
l ]

α[/k?lk
?
lk
?
l ]

0

0 Ikq


The matrix P1(w) is now of the form of the matrix P (s) in
Lemma 1 with X,Y, Z defined by (29), m := kσ + kq, n :=
kε+kσ, p := kp−k?p +kl−k?l +kq , and its dominant minors
satisfy (13).

In view of (8), put

[D̃1p[/k?pk
?
pk
?
p] D̃1l[/k?lk

?
lk
?
l ]] := 0,

D̃2p[/k?pk
?
pk
?
p] :=

[
0(kq−(kp−k?p))×(kp−k?p)

diag {βi(w)}

]

D̃2l[/k?lk
?
lk
?
l ] :=

[
0(kq−(kl−k?l ))×(kl−k?l )

diag {γi(w)}

] (30)

where βi(w) are polynomials that satisfy deg βi(w) ≤ pi,
i = 1, 2, . . . , kp−k?p , i.e. ∀i ∈ /k?pk?pk?p , and γi(w) are polynomials
with constant terms equal to zero satisfying deg γi(w) ≤ li,
i = 1, 2, . . . , kl−k?l , i.e. ∀i ∈ /k?lk?lk?l . Notice that kq−(kp−k?p) ≥
kε, kq − (kl − k?l ) ≥ kε.

The dominant minors of the matrix P1(w) can be written
in the following form.

dmP1(w) = detX [j1j1j1] detY
[j2j2j2]
[/kkk] detZ

[kkk]
[kkk] =

detX [j1j1j1] det

[[
0
Ap

]
[/k′pk
′
pk
′
p]

[
0 0
Al 0

]
[/k′lk
′
lk
′
l]

][j2j2j2]

detZ
[k′pk
′
pk
′
p]

p[k′pk
′
pk
′
p]

detZ
[k′lk
′
lk
′
l]

α[k′lk
′
lk
′
l]

where

j1j1j1 ∈ Skε+kσkσ+kq
,

j1j1j1 ∪ j2j2j2 = jjj,

i, jjj, kkk are as in (13),

k′pk
′
pk
′
p ∈ Skp−k

?
p−i1

kp−k?p

k′lk
′
lk
′
l ∈ Skl−k

?
l +kq−i2

kl−k?l +kq

i1 + i2 = i

(31)

More explicitly,

dmP1(w) = detX [j1j1j1]

 ∏
∀i∈/k′pk

′
pk
′
p

(
w
qkq−(kp−k?p)+iβi(w)

)∏
∀i∈k′pk

′
pk
′
p

wpi

∏
∀i∈/k′lk

′
lk
′
l

(
w
qkq−(kl−k

?
l
)+iγi(w)

) ∏
∀i∈k′lk

′
lk
′
l

α̃i(w)

}
(32)

where γi(w) := 0 and α̃i(w) := 1 for i > kl − k?l . The
relationship (32) implies that

gcddmP1(w) = gcd(detX [j1j1j1], j1j1j1 ∈ Skε+kσkσ+kq
) G

= gcddmX G,

where G denotes the gcd of the bracketed expression in (32)
for all k′pk

′
pk
′
p, k
′
lk
′
lk
′
l.

Let
gcddmX := wd̄ψ̄(w),

G := wd̂ ψ̂(w),

where ψ̄(w) and ψ̂(w) are coprime polynomials.
Now G will be investigated in more detail. First, the

following holds for all k′pk
′
pk
′
p, k
′
lk
′
lk
′
l satisfying (31)

k′pk
′
pk
′
p ∪ /k′pk′pk′p = {1, 2, . . . , kp − k?p}
k′lk
′
lk
′
l ∪ /k′lk′lk′l = {1, 2, . . . , kl − k?l , . . . kl − k?l + kq}

Next, consider the ”boundary” subsets of Skp−k
?
p−i1

kp−k?p
and

Skl−k
?
l +kq−i2

kl−k?l +kq
and the corresponding parts of dominant minors

of P1(w) that contribute to G, say dmP1G(w). Let k′lk
′
lk
′
l =

{1, 2, . . . kl − k?l , . . . , kl − k?l + kq}. Then,
• if i1 = 0, k′pk

′
pk
′
p = {1, 2, . . . kp − k?p}, /k′pk′pk′p = ∅ and

dmP1G(w) =
kp−k?p∏
i=1

wpi
∏
∀i∈k′lk

′
lk
′
l

α̃i(w)

• if i1 = kp − k?p , k′pk
′
pk
′
p = ∅, /k′pk′pk′p = {1, 2, . . . , kp − k?p} and

dmP1(w)G =
kp−k?p∏
i=1

(
w
qkq−(kp−k?p)+iβi(w)

) ∏
∀i∈k′lk

′
lk
′
l

α̃i(w)

Evidently, the value d̂ is constrained by these two
dmP1G(w). In particular, if all βi(w) are divisible by w, then

the smallest d̂ =
kq∑

i=kq−k?q+kε+1

qi (recall that kp−k?p = k?q −kε). If

βi(w) is not divisible by w, the value of d̂ can be increased

up to
kp−k?p∑
i=1

pi. To sum up, for all i1, 0 ≤ i1 ≤ kp − k?p , the

inequalities

kq∑
i=kq−k?q+kε+1

qi ≤ d̂ ≤
kp−k?p∑
i=1

pi.

are satisfied.
Analogously, to estimate the value of deg ψ̂(w), it is suf-

ficient to consider the below subsets of Skl−k
?
l +kq−i2

kl−k?l +kq
and

the corresponding dmP1G(w) with k′pk
′
pk
′
p = {1, 2, . . . kp − k?p}.

Then,
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• if i2 = 0, k′lk
′
lk
′
l = {1, 2, . . . kl−k?l , . . . , kl−k?l +kq}, /k′lk′lk′l =

∅ and dmP1G(w) =
kl−k?l∏
i=1

α̃i(w)
∏
∀i∈k′pk

′
pk
′
p

wpi

• if i2 = kl − k?l , k′lk
′
lk
′
l = {kl − k?l + 1, kl − k?l + 2, . . . , kl −

k?l + kq}, /k′lk′lk′l = {1, 2, . . . , kl − k?l } and dmP1G(w) =
kl−k?l∏
i=1

(
w
qkq−(kl−k

?
l
)+iγi(w)

) ∏
∀i∈k′pk

′
pk
′
p

wpi

It can be seen that the degree of the non-divisible part by w

that can be assigned to G cannot exceed
kl−k?l∑
i=1

li and reaches

its maximal value if the polynomials γi(w) are zero. On the
other this degree can reach zero if the polynomials γi(w) and
α̃i(w) are coprime. At the end, there always exist matrices
D̃ij such that G satisfies the following set of inequalities.

kq∑
i=kq−k?q+kε+1

qi ≤ d̂ ≤
kp−k?p∑
i=1

pi, (33)

0 ≤ deg ψ̂(w) ≤
kl−k?l∑
i=1

li, (34)

Consider now the gcddmX . It follows that the matrices
D̃ij satisfying (8) can be chosen such that

kq∑
i=kq−kε+1

qi ≤ d̄ ≤ A1 +

kε∑
i=1

qi (35)

0 ≤ deg ψ̄(w) ≤ A2 (36)

where

A1 +A2 ≤
kε∑
i=1

εi +

kσ∑
i=1

σi

When kε = 0, the gcddmX is not divisible by w, which
implies

d̄ = 0 ⇔ A1 = 0. (37)

The conditions (33)-(37) then directly lead to

gcddmP1(w) = wd̂+d̄ψ̂(w)ψ̄(w)

where
kq∑

i=kq−k?q+1

qi ≤ d̂+ d̄ ≤ A1 +

kp−k?p∑
i=1

pi +

kε∑
i=1

qi ,

0 ≤ deg
(
ψ̂(w)ψ̄(w)

)
≤ A2 +

kl−k?l∑
i=1

li,

and A1 = 0 if kε = 0, which shows that (27) holds. Taking into
the account (26), the relationship (21) follows. Then, having
the matrix D̃NF (w), a state feedback gain can be calculated
using the relationship D̃NF (w) = −FÑE(w).

IV. CONCLUSION

The problem of pole assignment by state feedback to the
column regularizable systems (1) is considered in the paper.
Necessary conditions of its solvability established in [5] are
extended by proving their sufficiency. The results are stated in
Theorem 1 that gives necessary and sufficient conditions for
pole placement.
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